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Abstract

Presented is a quantum lattice gas for Navier-Stokes fluid dynamics
simulation. The quantum lattice-gas transport equation at the micro-
scopic scale is presented as a generalization of the classical lattice-gas
transport equation. A special type of quantum computer network is pro-
posed that is suitable for implementing the quantum lattice gas. The
quantum computer network undergoes a partial collapse of the wavefunc-
tion at every time step of the dynamical evolution. Each quantum com-
puter in the network comprises only a few qubits, which are entangled for
only a short time period. A Chapman-Enskog type analysis of the quan-
tum computer network indicates that the total system of qubits behaves
exactly like a viscous lattice-gas fluid at the macroscopic scale. Because
of the quantum mechanical nature of the scattering process, superposition
of outgoing collisional possibilities occurs. The quantum lattice gas obeys
detail balance in its collisions and is therefore an unconditionally stable
algorithm for fluid dynamics simulation.

1 Introduction

Prior to the advent of digital computing in the late 1940's, analog computers
held much promise. An electrical circuit can be constructed to simulate, say, an
underdamped oscillator governed by a second order differential equation. For
example, an electrical circuit can drive a trace on an oscilloscope mimicking the
vertical motion response of a fast moving automobile with poor shock absorbers
after passing over a speed bump-one continuous physical system configured to
behave just like another continuous physical system. Today, after five decades
of digital computing, history may repeat itself in the sense that it may again be
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worthwhile to build "analog" computers-for example, a quantum mechanical
spin system configured to behave just like a Navier-Stokes fluid.

The purpose of this paper is to show how to do this. We show how to
arrange a network of small quantum computers so that, taken as a system, the
qubits within the network mimic the behavior of a system of massive quantum
particles moving and colliding on a discrete spacetime lattice. This discrete
quantum particle system is termed a quantum lattice gas and the associated
quantum computer network is called a lattice-gas quantum computer.

Over a decade ago, classical lattice gases were found that behave like a vis-
cous Navier-Stokes fluid at the macroscbpic scale [1, 2]. In this paper we show
that a quantum lattice gas does too. The prediction of the quantum lattice gas'
macroscopic equations of motion is achieved by a generalized Chapman-Enskog
analysis. A property of the quantum lattice gas (when used as a numerical al-
gorithm to implement a probabilistic lattice gas on a classical computer) is that
continuous macroscopic fields for the mass and momentum densities are directly
obtained. There is no need for either ensemble averaging or coarse-grain space-
time averaging, which are computationally expensive in a classical lattice-gas
simulation. This computationally useful property of the quantum lattice gas
arises because it models the discrete particle system directly at the mesoscopic
scale, avoiding noisy fluctuations while retaining detailed balance in the local
particle collisions [3]. Detailed balance is satisfied because of the unitary action
of the collision operator as it causes quantum mechanical superpositions of out-
going particle configurations at each site of the spatial lattice. Consequently,
the quantum lattice gas is unconditionally stable as a numerical algorithm.

We calculate the single-particle distribution function analytically for a quan-
tum lattice-gas system at local equilibrium. The analytical prediction is that
it has the same form as the single-particle distribution function of a classical
lattice-gas system, which also obeys the principle of detailed balance. We ver-
ify this prediction through numerical simulation of a two-dimensional quantum
lattice gas, which is a straightforward generalization of the classical FHP lat-
tice gas [2]. For comparison purposes, we also include results from a classical
FHP simulation. In the low Mach number incompressible fluid regime, there is
excellent agreement between the theoretical prediction and the numerical data
for the single-particle occupation probability.

2 Review

There are new possibilities and limitations that arise in computing if we use
the principle of quantum mechanical superposition of states [4, 5, 6, 7, 8, 9].
In quantum computing a two-level quantum bit represents the smallest unit
of information which may be in a superposition of the discrete states 10) and
I1).l An example of the physical embodiment of a qubit is the z-component of

1 A qubit, Iq) = acO) + j311), has an amplitude, a, of it being in the zero state, 10), and
another amplitude, fl, of finding it in the one state, 11). The probabilities add to unity:
(010) + (111) = (qlq) so the complex coefficients are constrained by Ja12 + 1,12 = 1.
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a nuclear spin in an atom in a uniform external magnetic field.2

An open issue for quantum computing is whether entangled qubit states (of
many qubits, much more than two) can be isolated from the surrounding envi-
ronment for delicate quantum algorithmic steps to be completed. Using quan-
tum mechanical superposition among qubit states to speedup a computation by
simultaneously encoding many possibilities, an approach termed quantum paral-
lelism, is generally considered the primary virtue of quantum computation. 3 Yet

uncontrolled coupling with the surrounding environment causes decoherence of
the qubit states and the virtue is lost--quantum parallelism levies a high price
for coherence of the quantum computer's wavefunction. This has spurred the
development of scalable quantum error correction techniques, considered cru-
cially important for the enterprise to continue [11, 8, 12, 13]. Because of the
difficulties of quantum coherence, the first quantum computer comprised only
two qubits.

An historical starting point that led to quantum computing was reversible
computing [14]. Since microscopic physics is reversible4 , it is believed that
quantum mechanical algorithms must be too.5 Reversible algorithms for sim-
ulating physics on a quantum device can serve as a guide for constructing the
device. The common assumption is the quantum mechanical device itself un-
dergoes unitary (and therefore reversible) evolution as it transitions through its
"computation".6

For any reversible computation, one can describe the algorithm by specify-

ing a unitary evolution operator, formally written as eifzr/h, acting on the sys-
tem wavefunction, IT), which constitutes the state of the quantum computer's
"memory". With N qubits, the quantum state IT) resides in an exponentially

large Hilbert space with 2 N dimensions. A new quantum state, I V), is generated
by application of a unitary matrix of size 2 N x 2N as follows

I"V) = eHT/hIqI). (1)

By repeated application of eif-Ir/ an ordered sequence of states is generated
and each one is given a unique time label. If the first state is labeled by t then
the next one is labeled by t + r, and the next by t + 2r, and so forth. With this

2
Cory et al. have employed the quantum number mý of a nuclear spin of an atom in

a molecule of a liquid placed in a strong external magnetic field to encode a single qubit
and they used nuclear magnetic resonance to control its state and interaction with qubits in
neighboring atoms within the same molecule [101.

3
1n lattice-gas quantum computation, quantum parallism is used to allow for simultaneous

multiple collision possibilities at each site of the lattice. This allows for a reduction in the
viscosity of the fluid that improves the computational efficiency. Yet the computational effi-
ciency is also due to the continuous phase of the qubit, 1q) = cosOl1) + sin010), which we use
to represent the probability of finding a particle, f. = cos

2 9.
"4Provided photons do not escape to infinity.
5

1n this paper we use irreversibility, for practical purposes, in part of the quantum me-

chanical algorithm.
6By restricting oneself to reversible algorithms, in principle heat production may be avoided

altogether [15, 16].
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understanding we write (1) as

1I'1(t + T)) = eiftrh/IIF(t)). (2)

In this way the computational time advances incrementally in unit steps of du-
ration T. Of course the state of the quantum computer exists at all intermediate
times, say at t +-Z, but for our purposes we need only use the state at intervals of
the time step r. The quantum computer's evolution is invertible by application
of the adjoint of the evolution operator

I )(t - = efr 11(t)). (3)

This computational picture is consistent with the Heisenberg picture of quantum
mechanics. For any reversible algorithm chosen, the task is to map the algorithm
onto the dynamical evolution of interacting qubits of the physical device.

3 Quantum Lattice Gas

Lattice-gas quantum computation uses the superposition of multiple qubit states
within a small spatial region of size f only for a short amount of time on the
order of the duration of a single time step, r. A lattice-gas quantum computer
has qubits arranged in a lattice-based array, with a small group of qubits at each
site. Each site of the lattice can be thought of as a small quantum computer and
all the quantum computers are connected in a lattice network. The quantum
lattice gas' evolution can be formally expressed as a special case of (2) as follows

I'IF ¢(x,...,YV;t + T)) = 6 1 (,-...,FV; t)), (4)

where S is a unitary streaming matrix and C is a unitary collision matrix and
where we have explicitly labeled the wavefunction's dependence on all the co-
ordinates of the lattice. The operator 6 causes mixing of the outgoing collision
configuration at each site of the lattice, locally entangling the qubit states within
a lattice cell of radius size, t. The operator S causes qubits to move from one
site to the next, by exchanges between nearest neighboring sites (it is identical
to its classical counterpart). Each qubit moves with unit speed, c = •, along
one of the lattice directions, 6a. Hence, in a completely coherent quantum com-
putation, the application of S causes global entanglement of the all the qubit
states7 . It remains an intractable problem to theoretically analyze the dynamics
of a quantum computer with many qubits because of the exponentially large size
of the Hilbert space in which the entanglement occurs. And to make matters
worse, even if a quantum computer was constructed with a large number of
qubits, its wavefunction would decohere by uncontrolled entanglement with the
external world and we know of no way to mitigate against this. So constructing

7
Mathematically speaking, this is because both S and 6 cannot be simultaneously diago-

nalized
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a large coherent quantum computer is difficult, if not all together impossible,
and predicting its behavior by analytical means is intractable.

So what can be done about this? What I would like to consider is a simplifi-
cation that will sidestep these obstacles and give us two important advantages:
(1) a simple way to use a quantum computer with a large number of qubits;
and (2) a way to analysis of its behavior. In lattice-gas quantum computation
complete coherence of the wavefunction is not needed for the algorithm to work.
In fact, we assume entanglement of qubit states is only among small clusters of
qubits in a localized nearby neighborhood, so independent quantum operations
are done in a classically parallel fashion on all sites simultaneously. This is the
collision step.

In a deterministic classical lattice gas, the collision operator is a permutation
matrix with components being either zero or one. In a probabilistic classical
lattice gas, the collision operator is a transition matrix with real valued com-
ponents. In contrast, in a quantum lattice gas, the collision operator can be a
unitary matrix with complex components. The collision process is in general
irreversible because a projection of the quantum computer's wavefunction into
a tensor product state over the qubits is periodically made causing the wave-
function to partially collapse. Hence, application of § does not cause any global
entanglement.

The quantum lattice gas presented here should not be confused with previ-
ous quantum lattice gas models by Succi [17], Boghosian [181, or Yepez [19] for
simulating quantum mechanical systems. Despite some similarities, the type of
quantum lattice gas treated in this paper is a direct generalization of a classi-
cal lattice gas with quantum bits replacing classical bits. In fact, if orthogonal
permutation matrices with 0 and ± 1 components are used for the collision pro-
cess, in the limit of complete collapse of the lattice-gas quantum computer's
wavefunction, the quantum lattice gas exactly reduces to a classical lattice gas.
This particular feature distinguishes the quantum lattice gas for fluid simulation
from the quantum lattice gases for quantum mechanical simulation.

4 Preliminaries

Consider a lattice-gas quantum computer with the following properties:

"* V is the number of lattice sites

"* B is the number of qubits per site (and the number of nearest neighbors)

"* N = VB is the total number of qubits

"* 2 N is the size of the full Hilbert space

"* 2 B is the size of the on-site submanifold, denoted 71

"* B is the size of the reduced on-site submanifold, denoted B

We will use the following convention for indices:
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Constants Names
e length unit
r time unit
m mass unit
c velocity unit (•)
D spatial dimension
B lattice coordination number
eai unit lattice vectors
a directional index (1,2,..., B)

i,j,k,l spatial indices

Table 1: Model Constants

Table 2: Wavefunction Symbols

Symbol Size of Manifold Description
S21v Total system wavefunction
2 2B On-site ket

w B Partially collapsed on-site amplitudes
q 2 Qubit ket

"* Small roman letters (a, b, c) for the B-space dimensions, a E {1,..., B}

"* Greek letters (a, /3, y) for the W-space dimensions, a E {0,... , 2B - 1}

"* Middle roman letters (i, j, k) for the spatial dimensions, i E {1, . . . , D}

The full Hilbert space of size 2 BV is partitioned into V independent quantum
manifolds of dimension 2B, as depicted in Fig.1. Quantum superposition of
states occurs only within each 2B-dimensional subspace, denoted Xl. A general
on-site ket defined over the basis states of W1 is the following

2B --1 
0

I V,(,t)) = P. ¢(y,t) I a) = ' ) (5)
1I)2B 

/ -

The ket 1 0) is specified by 2 B complex amplitudes, denoted 0,.-., 02B -i. The
quantum computer's total wavefunction is formed as a tensor product over all
the 71-manifolds

V

I IF (1 1,...,1 v;t) = I (yt)). (6)
X= 1

The collision operator, C, is blocked over all the 71-manifolds. That is, the
collision matrix is block diagonal with V blocks each of size 2 B x 2B, and
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000011>
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Figure 1: An array of small quantum computers (the quantum computers are depicted as
circles) arranged in a 2-dimensional triangular lattice (B=6). The large circle on the right is
an expanded view of a single quantum computer, which is one site of the lattice. It depicts
the on-site submanifold, 7-. Each quantum computer at a lattice node has 6 qubits so the
on-site ket 1 0) resides in a 64-dimensional Hilbert space. Each node is coupled to its 6 nearest
neighboring quantum computers by a mechanism allowing for the exchange of a single qubit.

therefore can be written as a tensor product

V

K="0'. (7)
X=1

The on-site collision matrix, U, is unitary and acts on the on-site ket

I '(:F, t)) = 0 1V(v, t)). (8)

The prime on the L.H.S. of (8) indicates that the ket is an outgoing collisional
state.

5 Unitary Collision Matrix

Let Q0 be matrices representing the conserved quantities in the single speed
quantum lattice gas, ý. = ((o,Oi) where i is an index over the independent
spatial coordinates. A fundamental property of a quantum lattice gas is that
the mass density and the momentum density can be written as follows

p = (¢18o1j) (9)
P <1,1> (10)

that is, where the component of Q0 are

B
(8o)v =- mSv E~a,(11)

a=1
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and where the component of Qi are

B
AQ,)P.,, = MC45, ,E b,.ei. (12)

a=1

The bpa denotes the at h-bit of the pth ket. The 6a here denote the unit lattice
vectors where a = 1,...,B. The components of the 2 B x 2 B qubit number
operator are defined by

('ha), = bjiabp,. (13)

In terms of (13), the operators for mass and momentum are

B

0. = M • io (14)
a=1

and
B

Q, = Mc E eaifia. (15)

a=1

In terms of (13) the invariant quantities are simply expressed as the following
matrix elements

B

P = Zm(Ol'hf I V) (16)
a=1
B

PV. = EZMCeai (1P I fi 1/i). (17)

a=1

The matrix elements (9) and (10) must remain constant after each time step
iteration

(V)(t + r) I O [ (t + r)) = (V¢(t) I I $ (t)). (18)

Since I O(t + T)) = O [ ¢(t)), this implies that

ut0,.U = Q,, (19)

which is just the commutator

[0, 0"I = 0. (20)

The matrices 0. must commute with U.
Let § denote the generator of U

0' = eie, (21)

where E is an "Euler angle". Consider a "rotation" through an infinitesimal
angle E so that & can be Taylor expanded to first order as

0=1 + i. (22)
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The unitary condition, UtU = 1, implies that the generator is hermitian

_ §1• = 0 + O(62). (23)

From (19), we see that mass and momentum conservation is ensured provided

Qog _ §tc. = 0 + O(E2). (24)

The solution of the set of linear equations (23) and (24) give the Lie algebra for
the unitary group. Therefore, the mass density (9) and the momentum density
(10) are conserved when each equivalence class block of the collision operator is
an element of the unitary group U(n) where n is the size of the equivalence class
of the incoming local configuration. This is an important feature of a quantum
lattice gas. Since any member of the unitary group can be used, the quantum
lattice gas is algorithmically robust.

Equivalence Class:m--2 p=0

/ 1100100>

\ 1010010>

"0 0 1 0 0 1 >

Equivalence Class:m=3 p=0

1 e 1101010>

>4- ]0 1 0 1 0 1 >

Figure 2: The equivalence classes for the quantum FHP lattice gas.

An equivalence class is defined as a set of basis states that correspond to par-
ticle configurations with the same mass and momentum. The unitary collision
operator, U, acting on the 2 B dimensional --manifold itself is block diagonal
over the equivalence classes. For example, there are two equivalence classes for
the FHP lattice gas [2], see Fig.2. The first equivalence class is comprised of the
following two-body kets

19) = 001001)
118) = 1010010)
136) = 100100)
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with mass, m = 2, and zero momentum, /7--0. A general ket in this mass-
momentum sector of the on-site manifold is a linear combination of these

a1100100) +131010010) + -Y1001001), (25)

where a, f3, and -y are complex numbers. The second equivalence class is com-
prised of the following three-body kets

121) = 1010101)
142) = 1101010)

with mass, m = 3, and zero momentum, 1 = 0. A general ket in this mass-
momentum sector is a linear combination of these

P1101010) + vl010101). (26)

So 0 for a two-dimensional quantum lattice gas on a triangular lattice has two
blocks, a U(3) block for mixing the 2-body configurations and a U(2) block for
mixing the 3-body configurations.

For the triangular quantum lattice gas, we have
(i2 ei( e'( cosr7 ei' sin/ 71 021•

0212 e k-e-'sin77 e-'Ccos 77 042 (27)

where zero momentum three-body configurations are mixed by a unitary matrix,
U(2) = U(1) ® SU(2), which in general has four free parameters. The zero
momentum two-body configurations are mixed by a unitary matrix, U(3) =
U(1) ® SU(3), which in general has nine free paramters8

€i~s = e' 0SU(3) (•s • (28)

6 Partial Collapse of Post-Collision Ket )

To avoid causing any global entanglement as induced by streaming, we project
the post-collision ket 1 0') which resides in the 2B-dimensional Wt manifold
onto a smaller B-dimensional submanifold, B. This is done using a projection
operator, denoted f, as follows

W') V)') (29)

The operator f causes a partial collapse of the locally entangled on-site state [1)
resulting in a nonentangled state 1w) residing in a smaller manifold (a mapping

8
We do not write out the SU(3) matrix in component form because it is too complicated.
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2 -Dimensions B- Dimensions

16 1000000> 01) 01
i 000001> Pr

2 0000 > ojection ( 1>
000011> (2 2>(J 2O 3> 0,3 Of V (6

* 
(04 4>

(05 5>
0 (0{6 6>

62 1 111.110> Injection (04 (X)5

Figure 3: Two-dimensional quantum lattice gas on a triangular lattice. The lattice coordi-
nation number is B = 6. There are 2 6 = 64 amplitudes in the l--manifold and 6 amplitudes in
the B-manifold. Injection maps the 6 on-site amplitudes w. in the B-manifold into the larger
l--manifold. The inverse process, projection, maps the 64 amplitudes 'b0 in the li-manifold
onto 6 amplitudes w. in the B-manifold. The projection is a measurement process that causes
a partial collapse of the on-site wavefunction 1 ?P(:, t)). The partially collapsed wavefunction
is I W(1, t)).

from 64 dimensions down to 6, see Fig.3). Thus 1w) in (29) may be termed the
collapsed post-collisional on-site ket. By construction, the action of P fixes the
phase, Oa, of the on-site qubits I qa) according to the following recipe

I q,) = cos. O 1) +sinea 10), (30)

where Wa = cos Oa. That is,

Iqa) = Wa I11) + V/1 - ,*W,. I10). (31)

After the collapse of the ket I V)) the single-particle occupation probability, de-
noted fa, is a well-defined quantity. It is the probability of finding a particle at
coordinate (X, t) with momentum mcdo

f(Y, t) = wa(1, t)wa(P, t). (32)

Using the single qubit number operator h 1 ( ) (32) can be written in

terms of the qubit ket as

fa(Y,t) = (qa(9,t) L 1 I q.(Y,t)). (33)

Furthermore, in (16) and (17), the matrix element (V) I ha I P) also gives the
probability of particle occupancy. So for a quantum lattice gas, fa can also be
expressed as the matrix element of the multiple qubit number operator 9

fa = (V) I fia I V). (34)

9In a classical lattice gas the single-particle occupation probability is obtained by ensemble
averaging over the number variables, fa = (na), where na = 0 or 1.
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Inserting the expression for the outgoing collisional state (8) into the R.H.S.
of (29), we have I w') --= / I sb)- (35)

In §7 we will use a nonlinear function for the projection operator. Our goal
is to retain as much quantum information as possible while allowing (35) to
reduce to the collision equation of classical lattice gas transport when U is a
real-valued permutation matrix. This is accomplished by projecting down from
the ?(-manifold containing 2 B complex amplitudes to the B-manifold with only
B complex amplitudes. Each w, (or associated qubit I qa)) is "attached" to
one of the lattice directions. The reason for this reduction of the quantum
information is the following. By using only B complex amplitudes, one for
each direction, we can straightforwardly write down a quasi-classical streaming
equation in analogy to the streaming equation of a classical lattice gas

I w(Y 1, t + T)) w'(, t)), (36)

where £Cbi =- 6ai$b. Inserting (35) into (36), we have

Iw(:f+ d", t +,r)) gy FUI¢Zt)). (37)

The only task remaining to complete the analogy to classical lattice gas dy-
namics is to rewrite the R.H.S. of (37) solely in terms of the w's. This can be
done by injecting the on-site collapsed ket I w) residing in the sub-manifold B
up into the larger on-site manifold 'H (see Fig.3). This process can be expressed
by application of an injection operator, I, as follows

I 0(5,0t)) = I I w(, t)). (38)

A straightforward way to accomplish the injection is to take the tensor product
over the on-site qubits

B

I '(•,t)) = I qa(9,t). (39)
e1<5a=1

This is a nonlinear operation.'" Let us revisit the example a two-dimensional
quantum lattice gas on a triangular lattice (B = 6), a generalization of the
classical FHP lattice gas [2]. Fig.3 illustrates projection from the 64-dimensional
It-manifold down to the 6-dimensional B-manifold and illustrates injection from
the B-manifold up to the It-manifold. The 6 on-site amplitudes W. (or the
associated 6 on-site qubits I q,)) generated by the projection can be streamed
in a classical fashion. After streaming to their new sites, each quantum computer
has a new incoming configuration of the wa amplitudes. Before this configuration
can be collided, they must be injected up to the larger 64-dimensional manifold
where the collision process is well defined.

10A non-square linear matrix could also be used, but it is difficult to find an appropriate
matrix even though it can be shown that one exists.
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Inserting (38) into (35) gives

I w'(Y, t)) = r Y! I w( ,t)). (40)

Using the fact that the projection of the injection is the identity operation:
I w) - fI I w), we write (40) in a form analogous to the classical lattice gas
collision equation

I 'Y t)) =1 W(x, t)) + [F , (:F, t)) - FiIw(Y", t))]. (41)

Finally, we arrive at the quantum lattice gas microscopic transport equation by
inserting (41) into (36)

I w(i+ a, t + 7T)) =1 w(:F,t))+ I Q(:, t)), (42)

where the quantum lattice gas collision operator is defined as

Q V(Y, t)) - " (1, t)) - f W(Y, t)).43

In component form, (42) is

w,,(Y + tg,, t + r) w= w(Y, t) + 0,, (w. (:i, t)). (44)

Equation (44) is identical in form to the classical lattice gas transport equation
where the occupation variable, n,- = 0 or 1, is replaced by a complex amplitude,
0 < Il _< 1, that continuously encodes the square root of the probability for
particle occupancy. Hence (44) is a much more useful expression of the quantum
lattice gas dynamics than (4) is.

7 The Projection Operator

We can write an analytical expression for the projection operator where the
amplitudes w, a nonlinear function of the amplitudes ,,a

2 - 1
Wa = ta() - I V) 12 ba. (45)

a=O

Note that baa = 0 or 1 is the Boolean value of the at' bit of the a t1h ket in the
number representation. Let fit and Pi be the operators for mass and momentum
in the B-space. Then the matrix element for the mass density is

p = (w I 7 Iw), (46)

where mab = m60 b, and the matrix element for the momentum density is

pvi = (W I AI W), (47)

13



where (Ai)ab = mceasab. Q0 and Qi were defined in §5 to be the mass and
momentum operators in ?P-space. Here we have mass and momentum operators
in w-space. The matrix element (9) defines the mass density as p = (0 1 (ýo I

V)), where (Q0 )f = m ~a=i ba 1 j, and the matrix element (10) defines the

momentum density as pvi = (? I QI 7), where (a=)1 = me•,•l bakeai(ab.

Equating (46) with (9) and equating (47) with (10) gives us a way to check the
projection operator (45).

This is done as follows

B

(w mIfw) = mE-I waI2 (48)
a=1

B 2 B

= m E I: 1' 12 b.a (49)
a=1 a=1

= EI o 2 I bo, (50)
a=l ( a=1

where we used the square of (45) on the second line of the derivation. Therefore,
we have

(w IenIw) = (?PI o'P), (51)

where the mass operator in O-space

B

= m b.6,9 (52)
a=1

is identical to Qo defined in (9). So the projection operator (45) conserves mass.
We continue the consistency check by rewriting (47)

B

(w I • ) w = mcE I w. 12 eai (53)
a=1

B 2B

= mcZ E I 7p. 12 b.aeai (54)
a=1 a=1

2B B

= E 1ý 12 mcEbaaeai), (55)
a=l ( a=1 )

where again we used the square of (45) on the second line of the derivation.
Therefore, we have

(w I A I w) = ( I1Q I 1), (56)
where the momentum operator in ip-space

B

40,3 = mCE boaeai6aO, (57)
a=-1
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is identical to Qi defined in (10). So the projection operator (45) conserves
momentum as well as mass.

8 Equilibrium Ansatz

The wa amplitudes in B-space can be ordered in powers of E as follows

I W) =1 W(o)) + E 1,,(1)) + 0(62 ), (58)

where I w(°)) denotes the equilibrium ket and where the ket I w(1)) is the first
order correction from equilibrium. The condition equilibrium is that I w(°))
satisfies the following identity

I •(O)) • (O)) I . (59)

Note that the associated equilibrium ket in L-space, I ?P(O)), follows from (58)
by injection 1 = 7P w)

I V) =1 0(o)) + E I V(1)) + o(E2). (60)

So we can also write (59) as follows

10(0)) = 6 10°)). (61)

It is clear that 10(0)) is an eigenvector of & with unity eigenvalue. Using (59),
we immediately see that the collision operator (43) vanishes at equilibrium

I I(W(0))) = fti I W(o)) - f1 I "(o)) = 0. (62)

Equations (58) and (59) constitute the essential ansatz that will allow us to
perform a Chapman-Enskog analysis of the quantum lattice gas. It is possible to
analytically solve (59) for I w(')). Knowing the form of I w(0)), we can predict the
hydrodynamics equations of the quantum lattice gas at the macroscopic scale.
In the Chapman-Enskog analysis, we expand the collision operator, I Q), about
this equilibrium ket I w(')). In so doing, the Jacobian of the collision operator
is computed as a first order correction and is evaluated at I w) =1 w(°)). The
transport coefficients for the mass diffusion, shear viscosity, and bulk viscosity
depend on the value of this first order correction, and this in turn depends on
the value ofI w(°)). Hence, one must determine the equilibrium amplitudes in
order to compute the value of the transport coefficients.

The a single particle occupancy probability fa = w*(°) (0) = (q(O)

q0= (0) I a I V) has the functional form

1
fa eap+P6.F+-yE + 1' (63)

where the argument of the exponential is a linear combination of the conserved
scalar quantities: (1) the mass p; (2) the momentum component ea ff along
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f6 Veocity X Classical lattice gas

Figure 4: Theory versus simulation comparison of the velocity dependence of the single-
particle distribution function in the non-Galilean parameterization: f. = W,*W 0 = d + dDga •

V+ gdD(D/2 + 1)Q 0 : VV. FHP simulation data is overplotted on this predicted mesoscopic
distribution function. Plots (a) and (b) are for background densities of d = .20 and d = 0.25,
respectively. A velocity shift is imparted along the x-axis; that is, along the f, direction

indicated in the figure. Data was collected from a 128 x 128 classical FHP simulation (crosses)
and was coarse-grained averaged over 1600 time steps from time step t = 400 to t = 2000.
Data was also collected from a smaller 32 x 32 quantum FHP simulation (circles) and were
measured at a single time step at t = 200.

the lattice direction 6,; and (3) the energy E at a lattice site. The real valued
coefficients a, /3, and -y are free parameters that are fixed by the non-Galilean
parameterization given in Appendix A. The reason for the form of (63) is the
collision matrix U is unitary and so the collisions obey detailed balance.

In the quantum limit, where the quantum lattice gas becomes a fully coherent
quantum system that undergoes unitary evolution, we expect the equilibrium
probability for the particle occupancy to have the form of (63). In the oppo-
site limit, the classical limit, where there is a complete collapse of the ket I XF)
everywhere, the quantum lattice gas reduces to a classical lattice gas system.
In the classical limit too, the particle occupancies are described by (63). Our
quantum lattice gas dynamics is somewhere midway between a fully quantum
system and a fully classical system. Since both ends of the spectrum are de-
scribed by (63), it is not altogether unexpected that the middle regime is too.
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However, this is not obvious. At first glance, it appears that the destructive act
of projecting from the li-manifold onto the B-manifold might destroy the form
of the equilibrium distribution. But it does not (see Fig.4); the distribution
(63) describes the particle occupancy of our quantum lattice gas [3]. Taking

wa - (q(o) fi q(°0)), the result (see Appendix A) is the following"

v'd(I1) D it.6)+ gD(D + 2) : Q)) (64)I ,-)= ~dIi) c - 4c2

where

I1>) (1) (65)

I •) - 1 1), (66)
and

a nd 
(67)

IQ) =L (•- D) 11.(7

Taylor expanding the collision operator gives

£2 () ~a(0~o) + C 00" (W) (1)~ + 0(E 2). (68)
Q ) aWb =( 0 )

Using the equilibrium condition (62), the first term on the R.H.S. vanishes and
we are left with

•2a (w) = £JabW() + O(E), (69)

where the Jacobian of the projection operator is defined as

J f~b (w)9P = (W ) (70)

Jab -~ 2 (w)

1
9

Wb __ W(0) (7*
Equation (69) can be written in vector form as

I i (w)) = eJ I w(')) + 0(,2). (71)

9 Boltzmann Equation for the Quantum Lattice
Gas

The quantum lattice gas microscopic transport equation (42) is

I w(pI + ER, t + E2 -)) =1 W(:i, t))+ I ppF, t)).

lIn (64), we have used the approximation v/ + x -- 1 + E, which holds for small x.
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Near equilbrium, each application of the projection operator causes only small
changes in the phase of I w) allowing us to Taylor expand the L.H.S. of (42).
Taylor expanding (42) to second order in e gives a Boltzmann equation

C I (i, t)) (ec _ai + ZAjL a3J I W(, t) + O(e) =- I (i, t)).
2,r T

(72)
In analogy with a classical lattice, we impose two constraints on the collision
*operator regarding the isometries of the lattice. The first constraint is

(W I fin 1 ) = 0, (73)

and this will be needed when we take the zeroth moment of (72). This constraint
enforces mass conservation. The second constraint to enforce momentum con-
servation is

Pw {I A IQ) = 0, (74)

and this will be needed when we take the first moment of (72). Inserting the
e-expansion of I wa), (58), and the e-expansion of IDa), (71), into the quantum
lattice gas transport equation, (72), and keeping terms up to second order in e
gives

E 2at$ I(0))+fZia, I )E 2 Z^8 1 (1) )+ 2 i'•jaiajI W(0)) T ()+(E)E2tII wJ°))+Lzio• I w()±L~~~ 3 I = I •1>oe)

(75)
Now equating the order-e terms, we get

j 1 I)) = •6oa I 'J(0)>. (76)

Then inverting the kinetic part of the Jacobian matrix gives

I W(1)) = ei-I (w(O)) A,0, I w(0)). (77)

So the first order correction ket is equated to the gradient of the equilibrium
ket. Inserting this result back into (58) we have

I W> =1 W(0)> + eW-1(A0 O I w(o)) + o(E2), (78)

Inserting (64) into (78), we have the subsonic c-expansion of I w) good to first
order in E

I ,,,=v 11)+• D"l. 6)+ 4cDD 2) irir:lQ) + 'D -•'Zz: VV11) +°(,E2).
IW/y 2 cv e 4c2  2vI)---J£:vI)±c)

(79)

10 Hydrodynamic Equations

ZEROTH MOMENT EQUATION:
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Now we can write the zeroth moment of the Boltzmann equation (72) by left
multiplying by (wjfiz as follows

E h Ow) + E(w I fnd~j I i~w) + ET (wTnijIoia- we )

(80)
The adjoint of (80) is the following

e2 (o~w 17j Iw) + e-(Ojw I AZiic IW) + EP Oa I 1jpnIw) = (Q 71w),
2-r2T

(81)
and the R.H.S. will also vanishes because of constraint (73). Because fiz and £
commute, adding (80) and (81) gives us the following zeroth moment equation

E2Ot(W I fin I w)-Ei(w I t4i I W)+---- ((w I ,ijj IOiOjw) + (0O, w I j I w)) = 0.

(82)

FIRST MOMENT EQUATION:

Now we can write the first moment of (72) by left multiplying by (wI3i as
follows

E22

2(W I p, I atw) + C(w I Pictj I ' 3w) + i 8
32kW) = 0, (83)

where the R.H.S. vanishes because of the second constraint (74) on the collision
operator. Because P and £ commute, adding (83) to its adjoint equation gives
us the following first moment equation

E2t (w I p, I w)+eOi(w I Pi w)---1-+-2 ((w I Pi,.j~k I OjOkW) + (PkOaw I Zk~jPi I W)) = 0.
(84)

The zeroth and first momentum equations (82) and (84) are partial differential
equations in the matrix elements. The macroscopic equations of motion, a mass
continuity equation and a Navier-Stokes equation, come from (82) and (84),

respectively.
We can now determine the partial differential equations that describe the

dynamics of a quantum lattice gas in local equilibrium. Inserting (78) into the
zeroth moment equation (82) and retaining terms up to second order in the
smallness gives

eOat H(m0C) I W(o))) + Eai (mc(W(O) f A I W(o))) (85)

- rME2P ((w(O) I I -14 I 0jw(o)) + (ojW(0) I (40-T)*4 I W(°)))
- mE 2j2 ((W(O) 144 °'°i~W( 0)) + (°i°jw(O) I ° L., IW(°))
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using the fact that h = ml. Identifying the local equilibrium mass density (46),
p = M(w(0 ) I w(°)), and momentum density (47), pvi = mc(w(°) I i I w(°)), we
arrive at the hydrodynamic equation for mass flow

c20tp + E, (pvi)= (86)

- me9e 2  ((Wo) I J-L w()+(0w)IL, h)* I
T

m e2 e ((w(o) 144A I°&°jW(°)) + (°i°jW(°) 14 4 I 0(0)))'

Similarly, by inserting (78) into the first moment equation (84) and retaining
terms up to second order in the smallness gives the hydrodynamic equation for
momentum flow
E2Dt (pvj) + EOjjfil - (87)

- e•Mcr21j ((w(°) I 4Z£I -'4k I oa'(°) + (OkW(O) I Lk(j-)*Z.ti I W(O))

-Emc2t ((w(O) 1 A.itik I O&OkW(O)) + (Ok~jw(o) 1166jI i I w(0)))

where the ideal part of the momentum flux density tensor is defined as

nIde'- mC2(W(°) I AL6 I W(O)). (88)

To obtain the macroscopic equations of motion, we have to determine the value
of the matrix elements appearing in (86), (87) and (88). This is carried out in
Appendix B. The result is that in the incompressible limit (V- 9 = 0), all the
matrix elements on the R.H.S. of (86) vanish leaving us with a mass continuity
equation

9p + 9i(pvi) = 0, (89)

and the matrix elements on the R.H.S. of (87) do not vanish leaving us with a
viscous Navier-Stokes equation12

Ot(pvi) + O9 (gpvivj) -09iP + pvO v'. (90)

In (90), the pressure is
P=p i lg• T2 (91)

and the kinematic shear viscosity is

V = (D + 2) -, (

The form of the kinematic viscosity (92) is identical to that for the classical
lattice gas as found by Henon [20]. However, in the case of the quantum lattice
gas, the value of n, can be different than the classical value because of quantum
mechanical interference of outgoing collision possibilities.

"12As is the case for the classical lattice gas, there is a density dependent prefactor appearing

in the convective term and the pressure, g(d) = D 1-2d
T-'2 -f -d"
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11 Summary

In this paper, we predicted the macroscopic behavior of a lattice-gas quantum
computer. The following observations are made:

1. The 4I-space unitary collision matrix, C, is successively blocked, first over
the on-site 2B-dimensional manifold, C Cf. Each block 0 is also
block diagonal over the equivalence classes.

2. The projection operator, f, periodically causes a partial collapse of the
on-site superpositions. Therefore, a quantum computer with many qubits
can simulate a quantum lattice gas with only short-term and short-range
entanglement and coherence of qubits.

3. Streaming of complex amplitudes (or the associated qubits) occurs in anal-
ogy to streaming in a classical lattice gas and does not cause global en-
tanglement in the quantum lattice gas because of the application of f.

4. The quantum lattice gas can be understood as existing between two limits,
a fully coherent quantum system and a classical system. And its single-
particle distribution function, fa = 1wa1 2 = (qa[JiCqa) - (¢]i•a[b), has the
form fa = 1/ (exp(ap + 06a" ± 3YfyE) + 1).

5. Like the lattice Boltzmann equation approach to simulate fluid dynamics,
the quantum lattice gas is a noiseless method that directly codes the par-
ticle dynamics at the mesoscopic scale. However, unlike the lattice Boltz-
mann BGK collision operator, the quantum lattice-gas collision operator
obeys detailed balance. Hence, the method is unconditionally stable.

6. The macroscopic hydrodynamic behavior is described by a viscous Navier-
Stokes equation.

12 Closing Remarks

To mimic the behavior of other physical systems, quantum lattice gases need
many qubits. A first generation quantum computer, with only two qubits,
cannot test the behavior of the quantum lattice gas at the macroscopic scale.
However, useful tests could be conducted on a network of these first generation
machines to test the practicality of the quantum lattice-gas formalism. For
example, we could test the reliability and computational speed of a network
of quantum computers. It is reasonable to expect that the number of qubits
will grow exponentially according to Moore's law as various quantum computer
designs are realized over time.

We know from experience with classical lattice gases that although the un-
derlying microscopic dynamics is reversible, dissipative shear viscosity arises at
the macroscopic scale-entropy increases while at the same time information is
conserved because of microscopic reversibility. The reason for this is that in-
formation, initially stored in the spatial correlations of arrangement of particle
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occupancies, in time is transferred into high order particle-particle correlations.
The same process should occur in a quantum lattice gas. We do not yet know,
in a quantum lattice-gas setting, if there is a way to block this informational
transfer mechanism and thereby reduce dissipation at the macroscopic scale.

Why consider constructing a quantum computer following the lattice gas
paradigm, when a general purpose quantum computer could simulate a quantum
lattice gas? The answer to this question is three-fold: (1) because any member of
the appropriate unitary group associated with an equivalence class block of the
collision operator is sufficient for the recover of Navier-Stokes hydrodynamics
at the macroscopic scale, so the lattice-gas quantum computer is robust; (2)
short-term coherence among only a small number of nearby qubits is needed;
and (3) its behavior is predictable by analytic means.

The quantum lattice gas method can be straightforwardly applied to three-
dimensional fluid simulations (the two-dimensional case was treated in this pa-
per because of its simplicity) and also applied to model other physical systems.
Lattice gases are a special case of cellular automata where conservations and
detailed balance are imposed and an isotropic spatial lattice is used. With
these few restrictions removed, the method presented in this paper represents a
general computational system called a quantum cellular automaton.
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A Single-Particle Distribution Function

The single-particle distribution function has the form

f(Za) = 1 (93)

where the natural log of the fugacity

In Za = ap +/)36a -+yE (94)

is a linear combination of the conserved scalar quantities, the mass p,the mo-
mentum component 6 • I along the lattice direction 6a, andthe energy E at
a lattice site. The real numbered coefficients a, /0, and -y are free parameters
that we will determine. It is convenient to define the momentum and energy
independent part of the fugacity as

zo =- e"P. (95)

Since fa(zo) = d is the reduced density, d = P-, we must set

1-d
zo= d (96)

This fixes the coefficient a. To fix the coefficients 3 and y, we can specify two
moments of the single-particle distribution function as constraint conditions.
We begin by Taylor expanding the single-particle distribution function f(za)
about z.

f(Za) = d + f'(zo)bz + 1f" (Zo)(6z2) +... (97)

The derivative of f evaluated at z. are

f'(z) = (Z + 1)-+ f'(zo) =-d 2  (98)

and
f"(z) = (z+ 1)3 2 f"(z) =2d3, (99)

so
f(za) ý- d [1 - d6z + d2 (6z)2]. (100)

To determine 6z, we begin by writing the fugacity in series form

Za = Z [zt (66a- PI k I [I•=O L "E k (101)

24 k=o k!
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In the subsonic limit, ff < mc, keeping terms only to second order in the velocity,
the fugacity becomes

Za Zo [ +06a if+ 1('36. P-2 (1 + -yE) + 0(v')- (102)

since p -, v and E ,-• v2 . Then to second order in the velocity, the change in za
is

5Za, = Za - Zo = 1 d )36,+ 1(/86a. p-2 + Y + O(V3) (103)

and the square of the change is

(5z 0)
2  ( d) 2 (6a. p-)2 + 0(v 3). (104)

Inserting the expressions for 6z and (Sz) 2 into the Taylor expansion of f(za,) we
have

f(za) = d 1- (1- d) [(1.if+ (E) .P12+7_]+(1+d)2(6a.)2

We have the freedom to choose the coefficients /3 and y to parameterized the
distribution function as we see fit to satisfy any two constraints. Consider a
parameterization that fixes the value of the coefficients fl and 7 by using the
following moments for the mass density and momentum density

B

p = mEfa (106)
a=1

B

P6 = mcZ oafa. (107)
a=1

The parameterization may be termed the non-Galilean parametrization. Con-
straints (106) and (107) are typically used in the formulation of classical lattice
gases. The single particle distribution function using this non-Galilean param-
eterization was first found in the mid 1980's by the US researchers Wolfram
and Hasslacher and by the French researchers Frisch, d'Humi~res, Lallemand,
Pomeau, and Rivet [1, 21]. Their derivation of (112) given below is different
then the derivation presented in this section; they used only two free coefficients
in the expression for the fugacity, one for the mass and the other for the momen-
tum; whereas we use three free coefficients. The reason for using only two free
parameters is that in the standard single-speed classical lattice-gas construction,
the energy is degenerate with the mass, so it was deemed unnecessary to keep
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a separate free coefficient for the energy. Using (106) and (107) as constraint
equations gives us a non-unity density-dependent prefactor in the convective
term in the hydrodynamic flow equation.

Inserting (105) into (107), the odd term in the distribution function expan-
sion survives the first moment sum over lattice directions; the odd term is the
one linear in the momentum. This fixes the value of )3 to be

D
_ - -d (108)

so the distribution function becomes

fa=d 1+Dýa.++ D2 1- 2a p-.P)2 + (1 - d)7 E1. (109)

Inserting (109) into (106), all the even terms that survive the sum over lattice
directions must add to zero. This fixes the value of -y as follows

D 1 - 2d

2 d(110)
or

yE = D 1 - 2d p2
(1 - d) 2 2 (111)

Therefore, the non-Galilean parameterized distribution function is

fa = d [1 + Detipi + D(D + 2)g(d)Qijpipj, (112)

where the density dependent prefactor g(d) is defined

D 1-2d (113)
g(d) D+ 2 1-d

and the traceless second-rank tensor Q0, is defined

=eaej - .ij (114)Qaij- eaeaj D *

(a is an isotropic symmetric tensor. This mass-energy degeneracy leads to an
anomalous description of the lattice-gas fluid's behavior. Let us see why. The
second moment of (112) gives the momentum flux density

B

mc2 E eaieajfa = P5ij + 9pviV. (115)
a=1

The density-dependent prefactor g appears in the nonlinear convective term,
so this parametrization does indeed give rise to non-Galilean fluid flow. The
pressure in (115) has a spurious quadratic velocity dependence

P = pc2 ( C-2). (116)
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B Determination of the Matrix Elements

For the triangular lattice, tensors made up of products of the lattice vectors are
symmetric and isotropic [1]. We have the following identities

(11 Li 1) =0 (117)
B5( I£,jA 11ý = • O (118)

(1 I jI k I11) = 0 (119)

(11 jj~k~ j I 1) = D(D+ 2) (6j50jk + JikJj1 + •il 5
1k) (120)

The Jacobion of the collision operator is circulant. Its eigenvectors correspond-
ing to the nonzero eigenvalues span the kinetic space, which contains a viscous
subspace characterized by a degenerate eigenvalue, denoted by Kn [221. The
eigenvectors in the viscous subspace are LjLj I 1), for i 0 j. Therefore, we have

JA1j j 1) = •.£i I 1), (121)

or inverting this over the kinetic viscous modes

,-11 I 1) = I--£ 11). (122)

Using these identities along with the epsilon expansion of I w), we can work
out the value of the matrix elements which appear in the mass and momentum
hydrodynamic equations of the quantum lattice gas at the macroscopic scale.
We have

dD "
(,( 0) I I,()) = d(1 I ,jLj I 1) + ---- (1 4£iA 1 k I i)vk +

c
gdD(D + 2) (11 (k~ j - LD') I l)Vk2c

2C2  DLIykl )I1VV
= dB_• 5 + "d-gB (15i6 5kt + Ji•cjL + 6tjk) VkV- gd(D + 2)Bo5.v2

D. 2d2 2DC2  `

= d 1gv 2 ) 5ij . (123)

(w(o) LIj Ojw(o)) = dD( I I O Vk

= 0. (124)

(w(°) I £Li~jk O.jw(°) = dD I 1)Akvl
dB

2c(D + 2) (¾3 kL + ikSj1 + 3 ) OkVL
dB

2c(D + 2) (2,iOkvk + , 2v,). (125)
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--

dD ( 1  1 I 1)49jvk
2cK.,

= 0. (126)

(W(o) C iCjJ-1C k I 9kW(°) = = - I (11Cijj-'Lk:,I 1)OkV

=-- (I I £ci~jkL,£ I 1)Okv,
2cn 7

dB
2c, 7 (D + 2) (Jij-5ki + 3 ikSjl + Siibjk) l9 kVL

dB
2c1%(D + 2) (DkVk&iJ + O(iV + OjVi). (127)
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